
A comparison and contrast of APKTool and Soot for injecting
blockchain calls into Android applications

Sean Sanders
University at Buffalo
spsander@buffalo.edu

Lukasz Ziarek
University at Buffalo
lziarek@buffalo.edu

Abstract

The injection of blockchain calls into an Android
Application is an emerging and important tool
for Android application developers. Blockchain
technology provides a way of securely storing
sensitive data and distributing that data while
providing immutability. This paper will compare
two compiler-based tools, APKTool, and the Soot
framework and how they can inject blockchain calls
into Android applications. A major contribution of
this paper is that it compares the APKTool, and the
Soot framework compilers for injecting blockchain
calls, and the difficulties each tool introduces when
implementing the injection of a blockchain call. To
the best of our knowledge, the use of the Soot
framework and the APKTool have never been used
to inject blockchain calls. The reason behind this
situation is the complexity of configuring blockchain
calls in Android applications. Part of the difficulty
is because of the constant changes in the API calls in
the Android framework. This presents a challenge
because the Soot and APKTool compilers have to be
modified to adapt to changes in the Android API.

1. Introduction

The goal of this paper is to demonstrate how
to inject blockchain calls into Android applications
using compiler tools, such as the APKTool and the
Soot framework. These two tools are a special
advanced class of compilers that have specialized
tools for instrumenting Android apps and Java code
and are more powerful than traditional compilers.
This paper is part of a larger research effort on
trying to ensure that advertisers and application
developers for mobile applications do not violate
advertising frequency, size, and related spamming
activities.

The primary research question is: What compiler
framework is best suited for injecting blockchain

calls into Android applications?
The major contribution of this paper is a

description of how modern compilers can be used
to inject blockchain calls into Android applications.
This is a unique approach to inject blockchain calls
into Android applications that has not been done
before. The reason many developers and researchers
have not incorporated blockchain injection using
compilers is because of the vast amount of
networking knowledge and blockchain knowledge
that is required and the inherent complexity of
the compiler frameworks. Definitions of the
terminology used in this paper can be found in
Section 7.

2. Blockchain and Smart contracts

Satoshi Nakamoto conceptualized blockchain
concepts and BitCoin in 2008 [1]. The first BitCoin
transaction was when Hanyecz bought a pizza at a
current value of about $9,500 on May 22, 2010 [2].
The blockchain is a peer-to-peer network that allows
for the sharing of data among a vast number of
peers [3].

Smart contracts, such as Ethereum, allow for
the secure storing of sensitive data [4]. The
word contract refers to a legally binding document.
Smart contracts are written rules that allow data to
be stored in a structured way. Smart contracts allow
data to be stored and viewed by as many people as
the smart contract rules allow. Smart contracts use
a special code referred to as Solidity Ethereum code.
This code uses a set of special syntax and semantics
that must be strictly followed based on the Solidity
compiler version specified.

The primary reason for using blockchain
technology is that it allows for the immutability
of data. That means that once the data is in
the blockchain, it can’t be deleted or modified.
The blockchain enables the tracking and logging of
transactions that take place on the blockchain. The

logging of transactions and the immutability of data
is useful for auditing and legal reasons.

We opted to use the Ethereum private
blockchain because it is a mature private blockchain
technology compared to other blockchain
technologies. Ethereum allows developers to
create and program smart contracts through
the highly developed Remix graphical user
interface (see: http://remix.ethereum.org/).
Ethereum was founded in 2013 by Vitalik Buterin.
Vitalik developed Ethereum because of the poor
functionality of BitCoin’s scripting language.

Ethereum allows developers to create
decentralized applications referred to as DApps
(data applications). The DApps run on a
peer-to-peer network and no single entity has
control of the network [5]. The peer-to-peer
network allows for increased security because of
the consensus protocol. A well-known consensus
problem that blockchain solves is known as the
Byzantine Generals problem. The Byzantine
problem occurs when a messenger running from
army to army camp delivering confidential messages
from each camp, but there is the possibility of
the messenger being replaced by a fake messenger.
Ethereum solves this problem through the use of
a consensus protocol. The next section discusses
how modern compilers function and provides a
historical background.

3. Compilers

Compilers are used to transform a high-level
language to a low-level language. Byte-code and
machine code are examples of low-level languages.
Decompilation, takes a low-level language and
transforms it to a high-level language. Soot
decompiles the Java program by first executing the
main method in the main class. Then the resolver is
called to fetch a reference to a class source (referred
to as a ClassSource). A ClassSource is an interface
between the file containing the Java byte-code and
Soot. When the resolver has a reference to a class
source, it attempts to resolve it. The resolver is used
to create the Soot class from the Java Byte-code
class. Finally, the Soot class methods are set to an
object. The Soot object is used to assist with the
creation of the jimple representation of the method.

There are many types of compilers that exist.
Soot and the APKTool are a special type of
compiler. They can both decompile and re-compile.
Both tools take the byte-code or java code and
deconstruct it into an intermediate representation

and then re-compile to byte-code form after
the injection or modification of the intermediate
representation.

There are very few articles that discuss the
injection attacks of Android applications [6]. One of
the papers discusses a mobile attack that leverages
a well-known vulnerability of HTML5-based mobile
applications. HTML5-based mobile applications
are vulnerable because they use Contact, SMS,
Barcode, MP3, and other channels and can be
leveraged for the mobile application attack. The
authors created a tool, NoInjection, to mitigate such
attacks. The tool has a false-positive rate of 2.30%.

Another closely related article discusses how an
attack can be conducted against the in-app billing
feature for Android [7]. Their generic attack uses
a dynamic Dalvik instrumentation approach they
developed to inject arbitrary code into a running
process. Specifically, the authors dynamically
subvert and modify the Play Store application on
the device that has been rooted. The author’s
approach is to abuse the JNI layer of Dalvik, and
to modify the interpreted Dalvik method and to
replace it with a corresponding native variant that
is provided by the attacker. The authors opted to
use the APKTool for deconstructing the Android
applications.

There are very few articles that closely relate
to the injection of blockchain calls into Android
applications and there are none that make a
comparison of compiler-based frameworks.

One article, A Comparison of Android
Reverse Engineering Tools via Program Behaviors
Validation Based on Intermediate Languages [8],
compares APKTool, dex2jar, and the Soot
framework. The article did a monumental job
comparing the two frameworks. But the article is
dated because of the numerous updates that have
been applied to Android Studio and the phone
APIs. For example, they tested on Android 6.0,
with an API Level of 23. The latest Android API
is 9.0 which is now API level 28. That massive
jump in the API device level has included many
optimizations and updates.

The most influential compiler article related
to our research discusses the role of control
flow analysis [9]. Control flow analysis is
essential because much of the Soot framework
incorporates control flows to analyze Android
applications. Control flow analysis is showing the
flow of data through the application. Without
the knowledge of control flow analysis, it is
not possible to incorporate more sophisticated

http://remix.ethereum.org/

analysis. There is a default control flow analysis
that can be used, but it limits you from
analyzing more complex applications and reduces
the chances of successfully injecting blockchain calls
at specific/critical locations in the Android app.

Another interesting compiler research topic is
the analysis of Dalvik byte-code using the Soot
tool [10]. The article illustrates how to use Soot
to analyze Dalvik byte-code. This is important
because in the past it was not possible for Soot
to analyze any Dalvik byte-code. Dalvik byte-code
is important because it includes information about
the Android Application. This includes information
such as the move instructions and other assembly
related operations. The authors also discuss the
limitations of Soot in analyzing Dalvik byte-code.
This brief article was a seminal contribution to
compiler research.

Another interesting Soot compiler article
discusses the optimization of byte-code and the
integration of intra-procedural and whole program
optimization. The paper was the groundwork for
the Soot framework tool that we are using [11].
Soot was implemented to assist in the optimization
of Java byte-code. The initial intention of this
research was to focus on the instrumentation of
Java code. Instrumenting or instrumentation refers
to the modification and analysis of a programming
language through the use of compiler technology.
The original experiment for the study consisted
of evaluating the Soot framework using 12 large
benchmarks, including 8 SPECjvm98 benchmarks
running on JDK 1.2 for GNU/Linux. Soot provided
an improvement of 8% when the interpreter was
run. Soot provided a 21% improvement when using
the just in time (JIT) compiler.

3.1. Soot Framework

The Soot framework reads in Java files and
Android APK files. When Soot reads in these
files, it examines the main class, and then builds
an object that references all the main methods in
the class. The Soot object constructs the jimple
representation. Then it looks for any code that was
specified for the injection. Finally, Soot attempts to
inject the code and will build the output of either
jimple, baf, shimple, or the Android APK file.

The Soot framework has some important
concepts that need some discussion. For example,
a scene is a critical idea in Soot. A scene manages
the Soot classes for the application being analyzed.
The scene holds all the Android applications classes

associated with the APK that is being analyzed.
Another important concept is the SootClass.

The SootClass represents the current class that
Soot tool is analyzing. The soot class can contain
many methods and each method is referred to as
a SootMethod. Another important output format
that the Soot tool uses is jimple. Jimple is the
simplified java code format that the Soot framework
uses for the constructing and deconstruction of
Android applications. Each Android application
method contains a JimpleBody. The JimpleBody is
a body, or the code that is enclosed in the current
SootMethod, that is represented in jimple form.
Each SootMethod contains many units. Units in
this context are code fragments. Figure 1 presents
an example of how Soot represents an Android
application in jimple form.

As illustrated in Figure 1, it is easy to
manipulate Android APK files using the jimple data
structures that Soot provides. The Soot framework
is a mature and powerful tool, carefully crafted
by McGill University. The Soot tool allows the
efficient and quick injection of blockchain calls into
Android APK’s. Other compiler-based tools, such
as the APKTool, are not as easy and efficient for
blockchain code injection.

Another important feature of the Soot
framework is the vast number of analysis functions
that are included. Some analysis functions include
forwards and backwards flow analysis, flow-through,
points-to analysis, template-driven intra-procedural
data-flow, and directed call graphs. Forward flow
analysis provides information about the future,
or new code, path of execution. Backwards flow
analysis provides information about the code in
terms of what variables will be used and not used.

3.2. Soot Framework Setup

To set up the Soot Framework, Ganache,
Android Studio, and Eclipse need to be installed.
Ganache is a tool that allows the generation of the
private blockchain environment. Ganache allows an
effortless way of specifying the blockchain accounts
and other settings for the private blockchain
environment. Without Ganache, it would be
nearly impossible to set up a private Ethereum
blockchain environment because a command-line
tool called geth would be required to set up a
private blockchain. The geth command-line tool is
very tricky to set up and to set the correct input
parameters.

Android Studio is the integrated development

Scene SootClass SootMethod JimpleBody
Unit

Unit

Contains

Figure 1. Soot application overview

Remix Ganache
Sends and Receives Data

Private Blockchain

Web3j
API

Sends and Receives Data

Eclipse Project/Android Application

Figure 2. Blockchain interaction overview

environment that allows users to create an Android
test application. Android Studio is easy to
maintain, test, and generate the final Android
application. The other integrated development
environment tool is Eclipse that is used for injecting
the private blockchain call into the Android
application.

3.3. Linking it all together

Remix is Ethereum’s graphical user interface
that allows developers to program their smart
contracts. It also allows them to connect to
the private blockchain environment. Ganache is
a tool that allows developers to create a private
Ethereum blockchain. The fundamental idea of
how everything fits together is that the Remix
environment connects to Ganache as shown in
Figure 2. Remix allows users to program their
smart contract through an online graphical user
interface and enables them to push their smart
contracts to the private blockchain. Ganache is
a tool that allows for the creation of a private
Ethereum blockchain environment.

Android Studio is used to create the application
that will have the API code that will connect and
interact with their smart contract on the private
blockchain. Then they have the Soot framework in
the form of a JAR file that the Eclipse project can
include. A JAR file is a prepackaged set of Java files
that allow for the creation of a single application

that can be executed. The programming of the
Soot analysis code injection allows users to inject
the blockchain calls into the simple test Android
application.

The increasing number of interconnected
technologies to use these tools imparts a high level
of complexity. In addition, knowledge of computer
networking is necessary for implementing Ethereum
blockchain calls. Code injection also introduces
complexity and there are several troubleshooting
techniques necessary to implement the code
injection.

Figure 3 illustrates the process of injecting a
blockchain call into an Android application. Remix
was used to connect to Ganache. Ganache is the
private blockchain environment that contains our
smart contract. Remix was used to connect to
Ganache and send the smart contract to Ganache.
Then the Soot/APKTool was utilized to inject
the blockchain call into the test application. The
Android test application already had the API
installed to eliminate some complexity. The
Android application when installed and run on the
Android phone emulator sends the data to Ganache
through the Web3j API. This might appear to be
simple, but in reality, it is not and becomes very
time consuming.

3.4. APKTool

APKTool is another tool that is used for
injecting blockchain calls into the Android test
application (Figure 4). It appears to be easier to use
than Soot at first, but it still requires a vast amount
of knowledge to understand where to inject calls
and how the blockchain calls need to be structured.
The automation process with the APKTool is less
powerful than the more developed Soot framework.
For example, you need to manually find an entry
point into the Android application. The main class
file of the Android application is the entry point.
More details are provided in our documentation
which will be available at http://www.artbarts.com.

APKTool injects blockchain calls into Android

Create
Test App

Soot/APKTool
Decompile

Android App
Soot/APKTool

Injects
Blockchain

Call

Decompiled App

App Executes
with

Blockchain
call

Recompiled App

Remix/Ganache
Blockchain
updated

Blockchain Transaction

Ganache
Blockchain Updated

Figure 3. Overview of code injection

Android
Application

Smali
code

Resources

Decompiles to

Figure 4. APKTool overview

apps by first decompiling the Android APK into
smali code in which you then have to inject
your blockchain code manually and then recompile.
Smali code is the human-readable format of the
Dalvik byte-code and is the assembly language.
Smali code uses registers like the x86 assembly
language. Individuals that are not familiar with
assembly language will have trouble understanding
Smali code and how it functions. Individuals
who have assembly language knowledge will be
comfortable with Smali code. More importantly,
you have to be able to manipulate the memory
registers that the APKTool uses.

3.5. Code Injection using Soot

When running the Soot framework Ganache
should be running and the Ethereum smart
contract should be already submitted to the private
blockchain. All the instructions for setting up
the Soot Framework and APKTool at https:
//artbarts.com/ under HICSS 2021 Blockchain
Injection Documentation section.

Suppose you want to inject the function
contract.SetName("John").sendAsync(), as
displayed in Figure 5, into an Android application.
The function is used to send the name "John" from
the Android application to the Ethereum smart
contract. This is necessary in order to inject the
function after the setContentView that is located

in the onCreate method. The injection statement
represented in jimple form consists of three lines of
code as displayed in Figure 6.

Figure 7 represents the code that is
required in order to inject the function
contract.SetName("John").sendAsync() into
the Android application. The purpose of the
if condition in Figure 7 is to check to see if
the Android application has the setContentView
function. If the condition is true, then the code is
injected. Once finished, Soot will run the injected
code and be able to automatically create for APK
as described in the documentation.

3.6. Code Injection using APKTool

For the APKTool, there needs to be some
thought into where to inject the blockchain code.
After an in-depth examination of the Android
code it was decided to inject the blockchain
code after the setContentView method, which
is located in the onCreate method. This
requires a manual check for invoke-virtual p0, v0,
com/example/simpleapplication/MainActivity;->
setContentView(I);. The next step is to change the
locals from 1 to 2 to allow for the use of one extra
local for the registers. The next step is to inject
the lines that are displayed in Figure 8. The only
tricky part of this, is navigating to the entry point
in the code where the MainActivity file is located.
The process to find the proper entry point in the
code is made clear in the documentation contained
at www.artbarts.com.

Once finished, the APKTool will run and inject
the code and will automatically create the Android
application package (APK). It is similar to an exe
file in Microsoft Windows. This process is described
in detail in the documentation.

https://artbarts.com/
https://artbarts.com/
www.artbarts.com

protected void onCreate

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

protected void onCreate After Injection

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
contract.SetName("John").sendAsync();

Inject contract.SetName("John").sendAsync()

Figure 5. Code to inject

1 $r3 = $r0.<com.example.simpleapplication.MainActivity: com.example.simpleapplication.Hello contract>;
2 $r2 = virtualinvoke $r3.<com.example.simpleapplication.Hello: org.web3j.protocol.core.RemoteFunctionCall

SetName(java.lang.String)>("John");↪→
3 virtualinvoke $r2.<org.web3j.protocol.core.RemoteFunctionCall: java.util.concurrent.CompletableFuture

sendAsync()>();↪→

Figure 6. Jimple code

1 if(Check_If_SetContentView_Exists(StringLastKnownUnit)) {
2 //ADD LOCALS
3 LocalGenerator l = new LocalGenerator(body);
4 Local lgContractReference =

l.generateLocal(RefType.v("com.example.simpleapplication.Hello"));↪→
5 Local lgRemoteFunctionCallReference =

l.generateLocal(RefType.v("org.web3j.protocol.core.RemoteFunctionCall"));↪→
6
7 // Create $r3 = $r0.<com.example.simpleapplication.MainActivity:

com.example.simpleapplication.Hello contract>;↪→
8 LinkedList<Value> ContractInitArgs = new LinkedList<>();
9 AssignStmt AssignStmtContract = Jimple.v().newAssignStmt(Return_Local(body,

"Hello"),Jimple.v().newVirtualInvokeExpr(Return_Local(body,"MainActivity"),
Scene.v().getMethod("<"+ EntryPointApp +": "+ EntryPointBlockchain +"
ContractInit()>").makeRef(), ContractInitArgs));

↪→
↪→
↪→

10 units.insertAfter(AssignStmtContract, LastKnownUnit);
11 // Create $r2 = virtualinvoke $r3.<com.example.simpleapplication.Hello:

org.web3j.protocol.core.RemoteFunctionCall SetName(java.lang.String)>("John");↪→
12 LinkedList<Value> ContractPersonName = new LinkedList<>();
13 ContractPersonName.add(StringConstant.v("John"));
14 AssignStmt AssignStmtContractFunc = Jimple.v().newAssignStmt(Return_Local(body,

"RemoteFunctionCall"),Jimple.v().newVirtualInvokeExpr(Return_Local(body,"Hello"),
Scene.v().getMethod("<"+ EntryPointBlockchain +": "+ RemoteFunctionCallWeb3J +"
SetName(java.lang.String)>").makeRef(), ContractPersonName));

↪→
↪→
↪→

15 units.insertAfter(AssignStmtContractFunc, AssignStmtContract);
16 // Create virtualinvoke $r2.<org.web3j.protocol.core.RemoteFunctionCall:

java.util.concurrent.CompletableFuture sendAsync()>();↪→
17 List<String> BlockchainArgumentsForSendAsync = new LinkedList<>();
18 SootMethodRef SendAsyncMethodRef =

makeMethodRef("org.web3j.protocol.core.RemoteCall","sendAsync",
"java.util.concurrent.CompletableFuture",BlockchainArgumentsForSendAsync, false);

↪→
↪→

19 VirtualInvokeExpr InvokeExprSendAsync =
Jimple.v().newVirtualInvokeExpr(Return_Local(body,"RemoteFunctionCall"),
SendAsyncMethodRef, Collections.<Value>emptyList());

↪→
↪→

20 InvokeStmt InvokeStatementSendAsync = Jimple.v().newInvokeStmt(InvokeExprSendAsync);
21 units.insertAfter(InvokeStatementSendAsync, (Unit) AssignStmtContractFunc);
22 }

Figure 7. Code to include for Soot

1 .line 23
2 iget-object v0, p0, Lcom/example/simpleapplication/MainActivity;

->contract:Lcom/example/simpleapplication/Hello;↪→
3
4 const-string v1, "John"
5
6 invoke-virtual {v0, v1}, Lcom/example/simpleapplication/Hello;

->SetName(Ljava/lang/String;)Lorg/web3j/protocol/core/RemoteFunctionCall;↪→
7
8 move-result-object v0
9

10 invoke-virtual {v0}, Lorg/web3j/protocol/core/RemoteFunctionCall;
->sendAsync()Ljava/util/concurrent/CompletableFuture;↪→

Figure 8. Code to include for APKTool

4. Comparing the Compilers for
Blockchain Code Injection

The Soot framework does a much better job
allowing users to inject blockchain APIs’ and other
APIs’ into Android applications. For example, the
APKTool does not have the ability to determine
the application’s entry points. Whereas, Soot
automatically determines the Android applications
entry point for the injected code. If a developer
has an assembly language background and the code
to be injected is simple, they may be a good
candidate for using the APKTool. Below is a table
representing a comparison of the APKTool and the
Soot framework.

Features Soot APKTool
Automated Analysis and Injection of blockchain calls Yes No

Language Output Jimple, Shimple, and Baf Smali
Can define main class for Android APK Yes No

Uses assembly like language No Yes
Can generate APK as output Yes Yes

Has poor documentation No Yes
Better suited for blockchain injection Yes No

Table 1. Soot and APKTool comparison

As illustrated in Table 1, Soot appears to be the
best option for injecting blockchain calls in Android
applications. This is especially true, if the Android
application is complex.

There are instances where the APKTool might
be advantageous. For example, if the developer
has a decent understanding of assembly language
the APKTool might be preferable because the
implementation of the injections could take less
time. Unfortunately, the Soot framework can
be quite complex which leads to the difficulty
of understanding how to use the tool effectively.
For example, injecting a blockchain call in Soot
could take at least six lines of code in order to
create the injection. And the Soot code would be
very complex. However, the APKTool might take
only three lines of Smali code. If the developer

understands Smali code, the injection could be
much simpler. This does not mean though that
the Smali lines of code for blockchain are easy to
create. Smali code can be quite complex when using
more sophisticated blockchain calls with numerous
parameter inputs.

5. Future Work

In the future it would be useful to look at
whether the Soot framework or the APKTool
does a better job at optimizing the run-time of
the code that has been injected into an Android
application. Phone emulators are often used to test
the functionality of Android code.

Another future research topic is to investigate
how to inject blockchain calls into more
sophisticated applications involving numerous
diverse APIs. For example, an application that
utilizes a weather data API might require the
developer to inject private blockchain code into
a specific location other than the entry point
of the app. In many instances, injection needs
to occur outside of the main application entry
point. Another potential area of investigation
would be to identify strategies to automate the
APKTool injection of blockchain calls directly into
an Android app similar to the Soot framework.
This would be very labor intensive, but could
provide insight into how to optimize Android code.

Finally, an investigation is needed on how to
inject an entire Ethereum API library into an
Android app. This would eliminate the developer
for having to include the Ethereum API library in
their applications. In our paper we only injected
the blockchain call of our smart contract into the
Android application, but we did not include the
library calls that allow the Android app to connect
to the private blockchain. This means that instead
of injecting a smart contract blockchain call, we

would need to include the code for connecting
to the private blockchain network. This would
require more sophisticated knowledge of writing
syntactically correct Smali code. In addition, it
would require more complex code and a greater level
of detail, compared to the high-level view discussed
in this paper.

6. Conclusion

This paper illustrated how to inject a blockchain
smart contract call into an Android application
using the Soot framework and APKTool. Using
these two tools can be a useful mechanism for
developers who want to track their applications
using a private blockchain. Injecting a blockchain
call into an already packaged Android application
is powerful and useful because now companies
can leverage this technology to track and monitor
applications for security and auditing purposes.

The limiting factor of using the APKTool is the
degree to which the developer understands assembly
language. The APKTool is more useful and easier
to understand if you understand assembly language.
Otherwise, the learning curve for the APKTool is
much steeper than the Soot Framework.

The Soot framework is useful when the developer
has to create complex analysis or wants to do an
analysis on multiple Android apps at once. This
would be more daunting with the APKTool because
the tool requires the decompilation of the Android
application. Then the insertion of the required
assembly code is required and finally the code
has to be re-compiled back to an APK. The Soot
framework eliminates this step by decompiling and
re-compiling the Android app.

One interesting aspect of this research is that
we have essentially created malware to inject
private blockchain smart contract calls into Android
applications. The application developer could
theoretically create malware to track their Android
applications and to send immutable data to
the private blockchain. This is a double-edge
sword because hackers could maliciously use this
knowledge to inject malicious code into Android
applications without the consent of the user or
Android app developer.

We are currently working on the enforcement
and mitigation of bad actors misusing Android
advertisement libraries. This has been a complex
task because of the complexities of integrating
various software technologies and the timing of the
blockchain smart contract calls. For example, it

becomes problematic when injecting a blockchain
smart contract call after another blockchain smart
contract call has been executed. The simultaneous
calls end up not registering to the private blockchain
correctly because of the mining requirement time
necessary to register the data.

References
[1] B. Marr, “A Very Brief History Of Blockchain

Technology Everyone Should Read.” Library
Catalog: www.forbes.com Section: Tech.

[2] “10 Years On, Laszlo Hanyecz Has No Regrets
About His $45M Bitcoin Pizzas,” May 2020.
Library Catalog: www.coindesk.com.

[3] L. Mearian, “What is blockchain? The
complete guide,” Jan. 2019. Library Catalog:
www.computerworld.com.

[4] “What is Ethereum? | history, roadmap, usage,
team, mining | Messari.” Library Catalog:
messari.io.

[5] D. . M. Hussey and D. . M. Hussey, “What Are
Dapps? | The Beginner’s Guide,” Jan. 2019.
Library Catalog: decrypt.co Section: Learn.

[6] X. Jin, X. Hu, K. Ying, W. Du, H. Yin,
and G. N. Peri, “Code Injection Attacks on
HTML5-based Mobile Apps: Characterization,
Detection and Mitigation,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and
Communications Security - CCS ’14, (Scottsdale,
Arizona, USA), pp. 66–77, ACM Press, 2014.

[7] C. Mulliner, W. Robertson, and E. Kirda,
“VirtualSwindle: an automated attack against
in-app billing on android,” in Proceedings of the 9th
ACM symposium on Information, computer and
communications security, ASIA CCS ’14, (Kyoto,
Japan), pp. 459–470, Association for Computing
Machinery, June 2014.

[8] Y. L. Arnatovich, L. Wang, N. M. Ngo, and C. Soh,
“A Comparison of Android Reverse Engineering
Tools via Program Behaviors Validation Based
on Intermediate Languages Transformation,” IEEE
Access, vol. 6, pp. 12382–12394, 2018. Conference
Name: IEEE Access.

[9] O. Shivers, “Control flow analysis in scheme,”
in Proceedings of the ACM SIGPLAN 1988
conference on Programming language design and
implementation, PLDI ’88, (Atlanta, Georgia,
USA), pp. 164–174, Association for Computing
Machinery, June 1988.

[10] A. Bartel, J. Klein, Y. Le Traon, and
M. Monperrus, “Dexpler: converting Android
Dalvik bytecode to Jimple for static analysis
with Soot,” in Proceedings of the ACM SIGPLAN
International Workshop on State of the Art in Java
Program analysis, SOAP ’12, (Beijing, China),
pp. 27–38, Association for Computing Machinery,
June 2012.

[11] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren,
P. Lam, and V. Sundaresan, “Soot: a Java
bytecode optimization framework,” in CASCON
First Decade High Impact Papers, CASCON ’10,
(Toronto, Ontario, Canada), pp. 214–224, IBM
Corp., Nov. 2010.

7. Appendix Terminology

Term Definition
compiler A program that translates statements written in a source programming language and into machine

language, object code or assembly.
decompiler A program that translates machine language, object code or assembly into a high level language

such Java.
bytecode A low-level representation of program code that has been compiled. It can closely resemble assembly

language.
APK The Android Package Kit is used to distribute and for the subsequent execution of an Android

application. It is similar to the exe format in Microsoft Windows.
code injection The process of injecting statements into an application at a specific location without disturbing the

flow of the application code.
soot A compiler framework that is able to decompile and compile Java code with the capability of

analysing and instrumenting Java code.
instrumentation Refers to the modification and analysis of a programming language through the use of compiler

technology.
jimple An intermediate representation of Java code that Soot generates as output.
APKTool A compiler framework that is able to simply decompile and compile Java code.
smali An intermediate representation of Java code that APKTool generates as output.
blockchain A peer-to-peer network that allows for the sharing of data among a vast number of peers [3]. All

data stored on the blockchain is immutable.
Ethereum
blockchain

A blockchain environment that allows the use of smart contracts.

smart contract A contract with written rules and terms allowing for controlling the storage, sharing, and modification
of data.

Ganache A tool used for creating an Ethereum blockchain environment.
solidity A smart contract object-oriented programming language that was developed by Ethereum.
Remix Ethereum’s tool that helps developers program smart contracts. It enables smart contract developers

to connect and push smart contracts to the Ethereum blockchain.
DApps This refers to the decentralized, resilient, transparent, and incentivized applications that reside on

blockchain infrastructures. These applications are supposedly less prone to errors.
Backward
flow analysis Provides information about the future code along the path of execution.
Forward
flow analysis Provides information about past code along the path of execution.

	Introduction
	Blockchain and Smart contracts
	Compilers
	Soot Framework
	Soot Framework Setup
	Linking it all together
	APKTool
	Code Injection using Soot
	Code Injection using APKTool

	Comparing the Compilers for Blockchain Code Injection
	Future Work
	Conclusion
	Appendix Terminology

